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Application of Genetic and Gradient Descent
Algorithms to Wavefront Compensation
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Present adaptive optics systems use a wavefront sensor to detect phase errors
in the incoming wavefront. Knowledge of these phase errors then is used to cor-
rect the incoming wavefront, reducing image distortion. However, these systems
require that a portion of the incoming light be diverted to the wavefront sensor and
away from the main receiver’s focal plane, which results in a loss of signal power in
the receiver in optical communication applications. Accordingly, it is desirable to
develop a system that relies entirely on the focal-plane intensity distribution as op-
posed to a separate wavefront sensor in order to detect and correct wavefront errors.
Two common stochastic optimization techniques—genetic algorithms and gradient
descent algorithms—are evaluated in this article.2 Although these algorithms are
promising, further work is necessary to enable them to be used in practical adaptive
optics systems due to their slow convergence speeds relative to the rate of change
in the atmosphere.

I. Introduction

Optical communications systems for space applications face the problem of distortion of the optical
beam as it passes through Earth’s atmosphere. Turbulent eddies in the atmosphere result in random
phase errors in the wavefront at the aperture of the receiving telescope. This leads to severe scattering
of the received signal energy in the telescope’s focal plane [12,14–16] and can result in degraded bit-error
rate (BER) performance in the presence of a background such as a bright daytime sky. Correction of the
phase front thus is highly desirable in order to achieve minimum bit-error rates.

1 Communications Architectures and Research Section.
2 If the incoming signal is integrated over a large number of incoming signal pulses, the resulting average will be very
close to the intensity distribution given by wave optics. The instantaneous signal, however, is not equal to this average
since this is an array of photon-counting detectors, and photon-counting effects would have to be taken into account
for shorter integration intervals. Here, we assume that integration intervals are sufficiently long to provide an accurate
average intensity distribution in the focal plane.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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Adaptive optics systems today operate by using a wavefront sensor to detect phase errors caused by
atmospheric turbulence [12]. Once the phase errors are detected by the wavefront sensor, appropriate
corrections are applied to a deformable mirror and to a tip/tilt mirror to stabilize the focused spot
of received energy on the detector, leading to improved optical performance. When applied to optical
communications, adaptive optics requires that photons be routed away from the main detector to the
wavefront sensor. One approach to mitigate the amount of signal loss is to implement a laser guide star
to correct the higher-order atmosphere-induced aberrations. Ground-based Rayleigh laser guide stars do
not correct for atmospheric tip/tilt, and some of the received signal power still will need to be directed to
a quadrant detector to stabilize the location of the downlink signal in the focal plane, thereby enabling a
reduction in receiver field of view. This loss of signal energy will impact the signal-to-noise ratio (SNR)
and the performance of the system and must be considered in the end-to-end link design. An approach
that is less complex and that does not require the diversion of energy from the communications detector
is of particular interest to deep-space optical communications.

A direct approach not requiring the use of laser guide stars or of tip/tilt mirrors would be to use the
information taken from the distribution of received signal power in the focal plane to perform the required
wavefront corrections. Information on the atmosphere-induced wavefront aberrations can be gleaned from
an array of intensity sensors in the focal plane. Although there is not a one-to-one correspondence between
phase distortions in the aperture plane and intensity distribution in the focal plane, perturbing the phases
in the aperture plane allows one to gather enough information from the intensity distribution in the focal
plane to correct wavefront errors. It is conceivable that this information can be used to correct the
wavefront without the need for a wavefront sensor. This would enable adaptive optics (AO) systems to
operate without the signal losses imposed by wavefront sensors. This concept was illustrated for image
correction by Carhart et al. [3] and by Givéon et al. [9,10]. Previous work by Weyrauch et al. [20] has led
to the development of gradient descent methods for optical communications, but no bit-error results were
given. Instead, emphasis was placed on optimizing cost or fitness functions related to communication link
quality. The algorithms presented in this article are a first step toward feasible algorithms for real-time
adaptive optics systems that would rely entirely on information from the focal plane without the need
for a wavefront sensor.

In this article, the objective is to simulate and evaluate the reception of a 64-PPM (pulse-position
modulation) optical link at the 1064-nanometer wavelength. The detector is a focal-plane array located
at the focus of a receiving telescope. The evaluation metric is the bit-error rate. The detector array
considered was a 128 × 128 pixel array. In the absence of atmospheric turbulence and aberrations by
optical components, the spatial distribution of the photons in the focal plane is an ideal Airy pattern [12].
Atmospheric turbulence introduces wavefront errors in the beam and blurs the size of the focused spot.

Previously published works by Vilnrotter and Srinivasan [15,16] describe the selection of the optimal
subset of focal-plane array detection elements for PPM pulse detection with minimal bit-error probabili-
ties. Their optimal solution approach requires a specific number of receiving elements in the focal plane
to keep bit-error probabilities at a minimum for the given focal-plane distribution. Increasing the number
of elements results in not only the capture of signal photons but also in the capture of increasing num-
bers of background photons. This results in reduced BER performance [15,16]. The ideal Airy pattern,
which corresponds to diffraction-limited performance, yields the lowest overall bit-error rates for a given
background level and for a given signal pulse strength. Accordingly, we seek to use adaptive optics to
bring the received pattern in the focal plane as close to the diffraction-limited Airy pattern as possible
and thereby minimize the BER.

Adaptive optics techniques for improving images are not new, and they have been used to improve
the resolution of large Earth-based astronomical telescopes achieving near-diffraction-limited imaging
performance in the infrared [12]. In the diffraction limit, the radius of the focused spot at wavelength λ
in the focal plane of a telescope of diameter D and focal length f is given by [12]
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w0 = 1.22
λf

D
(1)

However, atmospheric turbulence-induced wavefront aberration limits the resolution of large telescopes
to that of a telescope of diameter r0 Fried coherence length [12]. This has serious consequences for both
astronomical imaging and optical communications. As an example, for r0 = 7.0 cm, D = 1.0 m, and
a wavelength of 1064 nm, the focused spot diameter increases by a factor of approximately 14. This
increase in spot size is equivalent to an increase in field of view. For daytime operations, this will result
in an increase in background noise and a concomitant decrease in BER performance [15,16].

II. Model of the System

There are two planes of interest in our model of the receiving telescope: the aperture plane and
the focal plane. A received signal is incident on the telescope aperture plane. The telescope’s optical
system relays the signal to the focal plane, where it is detected. A focal plane array (FPA) consisting
of a 128 × 128 square grid of intensity detectors located at the telescope focus receives the signal. The
coordinate systems of these two planes are shown in Fig. 1.

We begin with a model of the receiving telescope, which is treated in this article using the Fourier
optics approach of Goodman [11]. Assuming an aperture-plane field given by Ua(r, θ) and a focal-plane
field given by Uf (ρ, φ), we can write [11]

Uf (ρ, φ) =
exp

(
j

k

2f
ρ2

)
jλf

∫ R

0

∫ π

−π

Ua(r, θ) exp
(
−j

2π

λf
cos(θ − φ)

)
rdθdr (2)

where λ and f are as previously defined and

k
�=

2π

λ
: wave number

(r, θ) : polar coordinates in the aperture plane

(ρ, φ) : polar coordinates in the focal plane

R =
D

2
: radius of the telescope’s aperture

Fig. 1.  Coordinate systems: (a) aperture plane and (b) focal plane.
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For a uniform plane wave arriving at the telescope along the telescope’s axis, such that Ua(r, θ) = 1, the
resulting focal-plane field is the ideal Airy pattern. Under realistic conditions, the atmosphere causes
phase distortions. These distortions result in changes in the effective path length along the z-axis, the
axis of the telescope. We denoted these by d(r, θ). The resulting aperture-plane field can be written

Ua(r, θ) = exp
(

j
2π

λ
d(r, θ)

)

= exp
(
jkd(r, θ)

)
(3)

Substituting Eq. (3) into Eq. (2) yields

Uf (ρ, φ) =
exp

(
j

k

2f
ρ2

)
jλf

∫ R

0
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exp
(
jkd(r, θ)

)
exp

(
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k

f
rρ cos(θ − φ)

)
rdθdr (4)

Equation (4) is a two-dimensional Fourier transform that is scaled by the wavelength and telescope focal
length.

The goal of adaptive optics is to introduce compensating phase shifts in the pupil plane to correct
d(r, θ) [12]. Although there are a variety of approaches that can be used to generate the compensating
phase shifts, including liquid crystal micro-electro-mechanical systems (MEMS) mirrors and deformable
mirrors [12], there are two basic approaches to measuring the required phase correction. These are [12]

(1) Use a wavefront sensor. This involves direct measurement of the wavefront aberrations,
enabling compensation to be applied to cancel the function d(r, θ) in Eq. (3).

(2) Measure the intensity distribution in the focal plane and deduce the phase distortions,
although there is not a one-to-one correspondence between the measured intensity dis-
tribution and the wavefront distortion. There are many signal processing approaches
available here that enable the AO system to rely entirely on focal-plane information. A
number of these approaches are discussed in [12], and a parallel gradient descent approach
is described in [3] and expanded upon in [4,5,17–20]. We investigate this approach and
describe it in detail in this article.

It is useful to decompose the wavefront path error function d(r, θ) into a complete orthonormal set of
functions. The most common basis set used in optics for this purpose is that of the Zernike polynomial
[2,12]. One benefit of using the Zernike polynomials is that of faster, more efficient convergence. By
perturbing the Zernike coefficient in the Zernike expansion of the wavefront error d(r, θ) instead of per-
turbing individual actuators, one can achieve faster, more efficient convergence in a gradient-descent-based
optimization algorithm [3].

III. Algorithms for Adaptive Optics

In this section, we begin with a discussion of the basics of genetic algorithms. We then proceed to
describe an application of genetic algorithms to the problem of controlling an adaptive optics system and
give a description of our algorithm for doing so. The simulation setup used to test genetic algorithms is
presented next, and this section ends with a set of simulation results.
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A. Basic Genetic Algorithms

Genetic algorithms represent one method of solving optimization problems [6,7]. Let Φ denote an
instance of a given optimization problem, and let Σ = {−→σ 1 (k) ,−→σ 2 (k) , · · · ,−→σ N (k)} denote a set of
solutions to the problem Φ at time k. In an optimization problem, we can define a measure of goodness,
or fitness, for each of the solutions in Σ. Let these fitness values be given by f

(−→σ n (k)
)
. Then we can

use the function f to order the solutions in
∑

according to their quality.

There are many types of genetic algorithms in existence, and we refer the reader to [6,7] among others
for more information. The genetic algorithm used in this article works as follows:

(1) Define a “keep fraction” 0 < α < 1. In each iteration of the algorithm, the Nα fittest
solutions are kept for the next generation.

(2) Define a “kill fraction” 0 < β < 1. In each iteration of the algorithm, the Nβ least-fit
solutions are discarded completely.

(3) The remaining solutions are replaced with new solutions. These are the result of “crossover
combination” of the remaining (1 − β)N solutions [1]. The Nα best solutions will propa-
gate unchanged, and there are (1 − α) N solutions to be replaced with the “offspring” of
the (1 − β)N solutions not eliminated in Step (2).

(4) Once the new solutions are generated, they are again sorted by fitness, and the process is
repeated.

The above approach is not the only possible approach to genetic algorithms, and so far we have been
vague in our description of the term “crossover combination.” The use of crossover combination will be
described in greater detail in the next section. A thorough discussion of genetic algorithms and their
many variations is given in two texts edited by Chambers [6,7].

B. Genetic Algorithms for Adaptive Optics

The use of genetic algorithms in adaptive optics is discussed here. Recall Eq. (4) and that, from
the previous discussion, energy is spread out in the focal-plane field due to optical phase distortions.
The objective of adaptive optics is to use deformable and tip/tilt mirrors to correct the wavefront and
effectively reduce d (r, θ) to zero. Practically, it is not possible to make d (r, θ) zero. However, we can use
corrective optics to minimize its root-mean-square (rms) value and bring the system closer to diffraction-
limited operation.

The first step in our approach is to expand d (r, θ) over the Zernike polynomials. Using the coefficients
of the expansion, we apply the appropriate corrections to the deformable and tip/tilt mirrors to reduce
the wavefront phase error [3]. Expanding upon the genetic algorithm described in the previous section,
we now present our basic genetic algorithm:

(1) Each solution −→σ n (k) ∈ Σ is a vector of Zernike coefficients that describe the deformation
to be applied to the deformable mirror.

(2) The fitness function, f
(−→σ n (k)

)
, to be applied in each case could be defined either as the

Strehl ratio, as the minimum number of detector elements capturing a certain percentage
of focal-field energy, or as a bit-error rate. Since each vector of coefficients −→σ n (k) will
result in a given field distribution in the focal plane, it can be argued that each one has a
fitness for a given phase distortion in the aperture plane and that this can be influenced
by applying a set of commands to the deformable mirror in the pupil plane.
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(3) The fitness f
(−→σ n (k)

)
of each solution is determined by applying that solution to the

deformable mirror. Once that is done, a Strehl ratio or other measure of fitness can be
taken. This is done once for each solution −→σ n (k) ∈ Σ.

(4) The solutions then are sorted from the least fit to the most fit. The Nα most-fit coefficient
sets are kept, and the Nβ least-fit sets are eliminated from the solution pool.

(5) The surviving (1 − β)N solutions are modified to generate the (1 − α)N new solutions to
be propagated to the next generation.

The method of generating the (1 − α) N child solutions can vary. The crossover combination method,
variants of which are used in genetic algorithms [1], is described in detail:

(1) Each solution −→σ n (k) is a vector of M Zernike coefficients. In other words, −→σ n(k) =[
zn,1(k) zn,2(k) · · · zn,M (k)

]
, where zn,i is the ith Zernike coefficient of the nth solution.

(2) We randomly select −→σ n1 (k) and −→σ n2 (k) as the “parents” of the new child solution.

(3) For each element of the child solution, randomly choose the corresponding element of one
of the parent solutions. By setting the probability of choosing each parent to one-half, we
ensure that on average a child solution contains half of its elements from the first parent
and half from the second parent.

(4) Add a small amount of Gaussian noise to each element of the child solution. This represents
“mutation.”

The genetic algorithm presented here has the following features:

(1) It always keeps the best solutions. If an optimal or nearly optimal solution is found by
chance, then that solution will not be lost. The best solution always survives to the next
generation.

(2) It always discards the worst solutions in order to direct the search toward increasingly
“fit” solutions.

(3) It uses a “two-parent” method of creating new solutions. We can increase the likelihood
that the best features of the parent solutions will, at some point, combine. For example, if
−→σ n1 (k) has correct coefficients in the first half of its vector and −→σ n2 (k) contains correct
coefficients in its second half, this recombination procedure is likely to produce offspring
solutions that contain many features of both.

(4) It includes random mutation. It prevents the system from getting stuck if none of its
coefficients is good.

The primary difficult with applying either this algorithm or any other genetic algorithm to the problem
of adaptive optics is that phase changes in the aperture plane are rapid, with significant changes occurring
on a time scale of milliseconds [12]. A genetic algorithm (GA) therefore needs to be able to adapt its
solution vectors quickly in response to atmospheric changes. Fitness evaluation is performed by applying
each of the solutions to the deformable mirror (DM) and measuring the intensity in the focal plane. It
is important that the solutions obtained be of sufficiently good quality to ensure that the BER will not
increase during the process of testing and adaptation. Hence, one of the main obstacles to the use of
genetic algorithms in adaptive optics is the need to adapt to change rapidly.

The number N of solutions per generation is crucial to GA performance. Most of our simulations
were run with N = 80, but this yields poor performance when correcting 400 Zernike coefficients. It took
approximately one week to perform a test with N = 800, but results were far more impressive. Both
cases are shown in Section III.D.
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C. Simulation Setup

The simulation model makes use of the “frozen atmosphere” assumption. In this model, a fixed
Kolmogorov phase screen is used to simulate the phase errors caused by the atmosphere. This screen is
called a frozen atmosphere because the atmosphere is considered to consist of discrete stationary states
that remain constant over a time period τo. The justification for the use of a frozen atmosphere model
comes from the following statement from Hardy: “It is assumed that the turbulence structure does not
change over time scales of less than a few seconds, so that temporal effects are entirely due to transport
by the wind.”3 In our approach, we use this concept to bound the time over which the simulation must
converge. A dynamic atmosphere is thus simulated by moving the phase distortion across the aperture D
with a speed D/τ0 [12].

The objective function f
(−→σ n (k)

)
used in our simulations is the number of pixels containing 80 percent

of the energy of the focal-plane distribution. This metric is suboptimal from a BER perspective in optical
communications, as will be demonstrated by the simulation results of this section. Other metrics that can
be optimized include the Strehl ratio and the set of metrics defined by Vilnrotter and Srinivasan [15,16]
to minimize the BER. Alternatively, one also could attempt to minimize the BER directly. Our choice of
80 percent enclosed energy was motivated by several factors:

(1) The BER that would result from a given focal-plane intensity distribution is difficult to
compute in practice, and long simulation runs would be required to estimate it. This
metric was not directly optimized for this reason. As a compromise, we sought to find a
metric whose optimization would yield nearly optimal BER performance.

(2) In our initial analysis, we found that optimizing the Strehl ratio did not yield as low a
BER as optimizing the number of pixels containing 80 percent of the enclosed energy on
the 128 × 128 pixel detector array.

As previously stated, the objective function f
(−→σ n (k)

)
must be evaluated after each change is applied

to the aperture plane phase. This implies that the rate at which the AO algorithm runs is inherently
limited by the maximum update rate of the deformable mirror or other phase-correction element. Never-
theless, these algorithms offer strong evidence that the focal-plane intensity distribution contains enough
information to permit correction of most phase errors without the need for a wavefront sensor. This result
is corroborated by image correction results obtained by Carhart et al. [3] and by Givéon et al. [9,10].

In the results that follow, we consider two approaches for computing the BER. The first method is
based on the work by Vilnrotter and Srinivasan [15,16] and computes an optimal subset of FPA pixels
to be used as a single detector. We call this the “optimal subset” method. It is optimal in that it yields
the lowest achievable BER when the system is required to use the sum of the outputs of a fixed subset
of pixels as its decision metric for PPM symbol decisions. The optimal solution given in [14–16] involves
the use of multiplicative weights in computing the optimal decision metric. This method is not used here
due to the complexity of computing the optimal weights. The second approach simply takes those pixels
that contain 80 percent of the enclosed energy of the focal-plane array signal distribution and uses those
as a single detector. The second method thus uses a suboptimal subset of pixels as a single detector,
yielding bit-error rates that are greater than those achieved using the first method. We will refer to these
methods as the “optimal subset method” and the “80 percent method” in the remainder of this article.

The parameters in this simulation are given in Table 1. It is assumed that we have an ideal inten-
sity detector, and no attempt is made to model physical effects such as quantum efficiency that would
be present in an avalanche photo-diode (APD) array or other effects that would be present in real-
istic detectors. The genetic algorithm is used to minimize the number of pixels containing 80 percent

3 J. W. Hardy, Adaptive Optics for Astronomical Telescopes, New York: Oxford University Press, Chapter 9, p. 316, 1998.
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Table 1. Parameters used in simulation.

Parameter Value

Telescope aperture diameter 1.00 m

Telescope center obscuration diameter 0.10 m

Telescope F number 75.80

Fried parameter 0.07 m

Wavelength 1064.00 nm

FPA pixel size (for 128 × 28 FPA) 40.30 µm

of the enclosed energy. Once the genetic algorithm has computed the appropriate phase corrections,
these corrections are applied. The resulting BER curves are computed using the optimal subset method
of Vilnrotter and Srinivasan [15,16]. No attempt was made to directly minimize the number of pixels in
the optimal subset, and this is reserved for future research. Since genetic algorithms are slow to converge,
this approach is used only in the still atmosphere simulation. Correction in the presence of movement of
the phase screen is considered only in the gradient descent case.

D. Genetic Algorithm Results

We begin with simulations that cover correction of only the first 100 Zernike coefficients in the expan-
sion of the function d(r, θ). We begin by defining some important terms:

(1) Exact 100: In this case, we use perfect knowledge of the first 100 Zernike coefficients to
remove all 100 of them from d(r, θ).

(2) GA 100: In this case, the genetic algorithm is used to estimate and correct the first
100 Zernike terms. Here, there were N = 80 test solutions per generation.

(3) GA 400: In this case, the genetic algorithm is used to estimate and correct the first
400 Zernike terms. Here, there were N = 80 test solutions per generation.

(4) GA 400 800: In this case, the genetic algorithm is used to estimate and correct the first
400 Zernike terms. Here, there were N = 800 test solutions per generation. Since this
took approximately one week to run, only one BER curve was generated.

(5) No AO: This refers to the uncorrected case.

(6) Diffraction limited: This refers to the case of a perfectly planar wavefront truncated by
the finite aperture.

(7) Guide Star AO – 11 Across: This refers to an AO system that uses a laser guide star and
performs the best achievable correction with 11 actuators across a deformable mirror. The
number of actuators across the deformable mirror is the main limitation here.

(8) Guide Star AO – 21 Across: This refers to an AO system that uses a laser guide star but
now has a mirror with 21 actuators across the aperture.

(9) In all simulations, we assumed 3.14×10−2 background photons per diffraction-limited spot
area per slot, an assumption corresponding to a spectral irradiance of 100 microwatts per
square centimeter-nanometer-stearadian, which corresponds to sunlight scattering from
optics [14].
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(10) The error bars shown on the BER curves in Figs. 2 and 3 were generated in the following
manner. A total of 10 random Kolmogorov phase screens were generated using the same
parameters, and the genetic algorithm was used to correct wavefront errors from each of
the 10 phase screens. The 10 phase screens were individually analyzed to determine the
BER, resulting in a total of 10 BER curves. Each curve shown is the median BER curve
from 10 trials, and the error bars are based on the lowest and highest BER values from
10 trials.

It should be noted that an AO system with K actuators across the deformable mirror is roughly
equivalent to a system that achieves ideal correction of the first K2 Zernike coefficients. For example,
an AO system with a laser guide star and 11 actuators across can achieve performance comparable to
exact correction of the first 100 to 120 Zernike coefficients. Similarly, an AO system with a laser guide
star and 21 actuators across can achieve performance comparable to exact correction of the first 400 to
500 Zernike coefficients.

Figures 2 and 3 illustrate performance of the genetic algorithm for the 100- and 400-coefficient cases,
respectively. We note that, since the genetic algorithm was designed to optimize the 80 percent enclosed
energy metric instead of the size of the optimal subset metric, it does not yield the optimal subset for
BER performance in this case.

An expanded analysis using 400 Zernike coefficients is shown in Figure 3. Performance does not reach
the “Exact 400” curve in all cases, as shown by the median BER curve labeled “GA 400.” This is
most likely due to the size of the search space and the possible presence of local minima. The genetic
algorithm requires a larger population and/or a longer search time to converge on the optimal solution
for 400 coefficients. With 800 solutions per generation for the correction of 400 Zernike coefficients (the

Fig. 2.  BER curves for correction of 100 Zernike coefficients
with no wind.
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Fig. 3.  BER curves for correction of 400 Zernike coefficients
with no wind.
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“GA 400 800” curve with N = 800), the GA achieved BER performance almost identical to “Exact 400,”
meaning that it converged to a nearly optimal solution. It also took over one week of computer time to
generate a single BER curve for such a powerful GA. Using just 80 solutions per generation, we obtained
the “GA 400” curve (with N = 80), which yields suboptimal performance. Due to the high complexity of
this algorithm, the decision was made to use a parallel stochastic gradient search method instead [3]. The
convergence time performance of the GA using 800 solutions per generation is shown in Fig. 4, and a quick
comparison with convergence curves for the gradient descent algorithm of Section IV (Figs. 7 and 8) shows
that, while gradient descent algorithms have promise, genetic algorithms do not. The genetic algorithm’s
performance with N = 80 is similar to that of an AO system with a guide star and 17 actuators across
the deformable mirror, which is comparable to correcting the first 250 to 300 coefficients.

Although the genetic algorithm is not a candidate for implementation due to its slow convergence
speed, illustrated in Fig. 4, the performance shown in Fig. 3 yields information on the problem at hand:

(1) The use of 800 solutions per generation rather than 80 leads to reliable convergence, which
indicates that searching a greater portion of the search space improves the likelihood of
convergence.

(2) The error bars for the GA 40 case, based on the minimum and maximum BER values,
touch the GA 400 800 line and come very close to the Exact 400 line. This suggests that
even with just 80 solutions per generation the algorithm may run into a global minimum
in the cost function, which is the number of pixels containing 80 percent of the energy
in the focal plane. However, the failure of the algorithm to consistently reach this very
good level of performance would suggest that there may be large numbers of local minima
in the search space, and a genetic algorithm would need a large number of solutions per
generation in order to have a high probability of reaching the global minimum, which is
the optimal solution.
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(3) The error bars for the GA 400 case, indicating the difference between best-case and worst-
case performance over 10 trials, are very wide, spanning 1 to 2 orders of magnitude in
BER. This would suggest that there is considerable variation among the local minima
encountered and that the quality of these minima may vary significantly.

(4) This suggests, but does not prove, that the search space is characterized by large numbers
of local minima of highly variable quality. In most cases, a genetic algorithm with too few
solutions per generation will tend to settle on these local minima, but a sufficiently broad
search normally yields the global minimum.

We suspect, but have not proven, that the search space of this problem thus is one characterized
by large numbers of local minima. This will have implications for the development of gradient descent
algorithms and, in particular, for the performance of the parallel gradient descent method described by
Carhart et al. [3–5], and these algorithms are likely to require modification to get out of local minima.
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Fig. 4. Convergence sample from the GA 400 800 run 
assuming a 10-kHz update rate. The GA still has not 
converged after 350 seconds.  Final convergence generally 
takes at least 500 seconds.

IV. Gradient Descent Method

The gradient descent algorithm is a faster method of converging to an optimized solution. This
method has been used for improving image resolution and for communications link tests [3–5,9,10,17–20].
In this article, we use it with a focal-plane array detector to improve the performance of the optical
communications link.

Given a vector of Zernike coefficients,

−→σ n (k) =
[
zn,1(k) zn,2(k) · · · zn,M (k)

]
(5)

and a cost function,
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f
(−→σ n(k)

)
(6)

we seek to estimate

∂f
(−→σ n(k)

)
∂zn,m

m = 1, 2, · · · , M (7)

The estimates so computed are used to generate an estimate of the gradient vector:

∇−→σ n
f
(−→σ n(k)

)
=

[
∂f

(−→σ n(k)
)

∂zn,1

∂f
(−→σ n(k)

)
∂zn,2

· · · ∂f
(−→σ n(k)

)
∂zn,M

]
(8)

Denoting our best estimate of the gradient vector by ∇̂−→σ n
f
(−→σ n (k)

)
, we perform the following update:

−→σ n(k + 1) = −→σ n(k) − α∇̂−→σ n
f (−→σ n(k)) (9)

if f
(−→σ n(k)

)
is a cost function we seek to minimize. The parameter α is a learning rate between 0 and 1.

The gradient descent method of Eq. (9) requires us to estimate the derivative in Eq. (7). We can
estimate the derivative using the following procedure:

(1) Perturb the mth coefficient zn,m by an amount ∆zn,m. Observe the change in the objective
function f

(−→σ n(k)
)
.

(2) Compute the quantity

∂f̂
(−→σ n (k)

)
∂zn,m

=
f

(
−→σ n (k)|zm=zn,m+∆zn,m

)
− f

(
−→σ n (k)|zm=zn,m

)
∆zn,m

(10)

as our best estimate of the derivative.

(3) Repeat the above procedure for all M Zernike coefficients.

We see that computing a single estimate of the gradient vector ∇−→σ n
f
(−→σ n (k)

)
requires a total of

M perturbations of the deformable mirror or other adaptive optical element in the system. This is the
primary performance limitation of this gradient descent method. Nevertheless, this does represent a form
of directed search, which is still faster and more efficient than the genetic algorithm method.

The form of gradient descent given above, while conceptually simple, yields a convergence time pro-
portional to M , the number of coefficients to correct. An even more efficient algorithm, the parallel
gradient descent algorithm given by Carhart et al. in [3], achieves convergence times proportional to

√
M .

This algorithm thus yields significantly faster convergence. It can be described as follows. Select a small
positive number δ to be used as the size of the perturbation. Generate a random perturbation vector:

∆−→σ n(k) =
[
∆zn,1(k) ∆zn,2(k) · · · ∆zn,M (k)

]
(11)

where
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∆zn,m = ±δ (12)

with equal probability.

Denote the resulting change in the objective function by

∆fn(k) = f
(−→σ n(k) + ∆−→σ n(k)

)
− f

(−→σ n(k)
)

(13)

Let µ denote a small, positive learning-rate parameter. The update equation for gradient-descent-based
minimization is

−→σ n(k + 1) = −→σ n(k) − µ∆fn∆−→σ n(k) (14)

This algorithm was used by Carhart et al. for image sharpening [3], and the metric being optimized
was one related to image quality. Here we are instead minimizing the number of pixels (FPA elements)
receiving 80 percent of the enclosed energy.

Although the convergence time of the gradient descent algorithm is proportional to
√

M , it is also
linearly proportional to the update rate η of the deformable mirror or other phase-correcting element.
For example, if η is increased by a factor of 10, then the gradient algorithm can perform 10 times as many
iterations per second, resulting in a factor of 10 reduction in convergence time. However, integration
time is inversely proportional to the update rate, and there is a trade-off between input SNR to the
gradient descent algorithm and the need for a reasonably fast update rate. Accordingly, this algorithm’s
performance in a real-world system is directly affected by the update rate of the phase-correcting element
(i.e., deformable mirror or other element). A key advantage of gradient descent over genetic algorithms
is computational simplicity; it is possible for a modern computer to reach update rates in the megahertz
range, although present deformable mirror (DM) technology does not permit such rapid updates.

A. Simulation Model and Gradient Descent Results

The gradient descent algorithm is faster than the genetic algorithm, and it yields similar BER perfor-
mance. In all simulations, we assumed 3.14 × 10−2 background photons per diffraction-limited spot. We
begin by presenting BER curves for the correction of 100 Zernike coefficients. Here is a list of important
terms:

(1) No AO: This refers to the uncorrected case.

(2) Exact M : This refers to the removal of the first M Zernike coefficients in the Zernike
expansion of d(r, θ). For example, “Exact 100” refers to the complete removal of the first
100 Zernike coefficients in the expansion of d(r, θ).

(3) Grad M : In this case, the gradient descent algorithm is used to estimate and to correct
the first M Zernike coefficients.

(4) Guide Star AO - K Across: This refers to an AO system that uses a Rayleigh laser guide
star in conjunction with a deformable mirror with K actuators across.

(5) Diffraction Limited: This refers to the case of a perfectly planar wavefront truncated by
the receiving telescope aperture.

In all simulations, we assumed 3.14 × 10−2 background photons per diffraction-limited spot area, an
assumption corresponding to a spectral irradiance of 100 microwatts per square centimeter-nanometer-
stearadian [14]. As in the genetic algorithm (GA) case, we also computed BER curves using the median
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from 10 different Kolmogorov phase screen realizations, and the error bars reflect the lowest and highest
BER values from these 10 realizations.

The results for 100 coefficients are illustrated in Fig. 5, and gradient descent yields performance similar
to that of “Exact 100” correction.

For 400 coefficients, Fig. 6 shows that gradient descent without wind achieves performance similar
to that of current AO with a laser guide star and just 13 actuators across the aperture, while the GA
achieved performance comparable to guide star AO with 17 actuators across. As stated in the discussion
of Section III.D on genetic algorithms, there is some evidence for the existence of many local minima
in the search space, and there is a possibility the gradient descent algorithm is finding suboptimal local
minima in many cases.

1. Gradient Descent Performance in the Presence of Wind. The gradient descent method’s
convergence, while swifter than that of the genetic algorithm, is too slow at a 10-kHz update rate but
sufficiently fast at a 2-MHz update rate if a sufficient number of signal photons are available. An illustra-
tion of this effect is shown in Fig. 7 for 100 Zernike coefficients and in Fig. 8 for 20 Zernike coefficients.
Using the frozen atmosphere model, the atmosphere changes significantly in just 0.01 s when moving at
7 m/s. The phases over any given aperture point are only correlated over 7 cm, so the algorithm must be
capable of converging in a time less than 0.01 s if the atmosphere moves at 7 m/s. Observed turbulence-
weighted daytime wind velocities are on the order of 30 m/s [8], resulting in a required convergence time
of ∼2 ms. Let “convergence time” be defined as the time required for the gradient descent algorithm to
bring the cost function to within 10 percent of the minimum value that will be achieved over the course
of operation. The convergence time for a gradient descent algorithm correcting 100 coefficients is on the
order of 0.05 s. Convergence is rapid enough only for about 20 to 50 coefficients with an update rate of
10 kHz.

In these simulations, 10-kHz and 2-MHz update rates were assumed. No noise is included in the
analysis at this time. A trade study between update rates and SNR at the input to the gradient descent
algorithm will be a topic of future study. The results shown here help to illustrate the properties of the
gradient descent algorithm and suggest directions for future research. The results for a 10-kHz update
rate and 1-m/s wind are presented in Fig. 9.
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Fig. 5.  BER curves for correction of 100 Zernike coefficients 
with  no wind.
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Fig. 6.  BER curves for correction of 400 Zernike 
coefficients with  no wind.

From Fig. 9, we note that some improvements in BER performance are achieved with a 10-kHz update
rate in the presence of slow 1-m/s wind. We are using the modified parallel gradient descent algorithm
of Carhart et al. [3], which has a convergence speed proportional to

√
M instead of M , where M is

the number of Zernike coefficients being corrected, yet convergence speed with a 10-kHz update rate is
insufficient for 5-m/s wind, as will be shown in Fig. 10. For this reason, no attempts were made to correct
more than 100 Zernike coefficients in the presence of wind during the course of this study. At 5-m/s wind
speed, the present gradient algorithm yields a BER that is nearly the same as that of an uncorrected
system for 100 coefficients. We state again that the gradient descent method used here seeks to minimize
the number of pixels containing 80 percent of the enclosed energy, and the metric being minimized is not
the optimal metric. There is a trade-off between correcting a large number of coefficients (i.e., 100), which
makes convergence time in the presence of wind too slow, and correcting too few coefficients (i.e., 25),
which means we are not correcting a sufficient number of coefficients to have a significant impact on BER.

With fewer coefficients to correct, the algorithm converges more rapidly. One difficulty in a dynamic
atmosphere is converging rapidly enough to keep up with changes. The frozen atmosphere model used
here, even with a wind speed of 5 m/s, poses a significant challenge to gradient-descent-based AO at
10 kHz, as shown in Fig. 11.

The question of performance with a faster update rate is partially addressed in this article. On
one hand, a faster update rate has the potential to allow significantly faster convergence. On the
other hand, as update rates increase, integration time over the focal-plane array decreases since up-
date rates and integration times are inversely proportional. So while faster update rates offer the promise
of better convergence in wind, there will be a definite trade-off between the faster update rates re-
quired by the gradient descent algorithm and the resulting shorter integration times and resultant loss
of SNR at the input to the gradient descent algorithm. This is a topic for future research, and no
such trade-off analysis has been carried out here. However, the potential of gradient descent algorithms
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Fig. 7.  Convergence of gradient descent algorithm for 100 coefficients.
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Fig. 8.  Convergence of the gradient descent algorithm for 20 coefficients.
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Fig. 9.  Bit-error rate performance using the optimal subset 
method for gradient correction of 100 Zernike coefficients 
with 1-m/s wind.
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Fig. 10.  Bit-error rate performance for gradient correction of 
100 coefficients in 5-m/s wind with the optimal subset 
method.

is illustrated by the following. Suppose that the assumption of very high SNR at the input to the gradient
descent algorithm continues to hold even at a 2-MHz update rate, and assume that the wind speed is now
a far more realistic 30 m/s (for upper atmosphere winds) [8]. Under such assumptions, gradient descent
converges, as shown in Figs. 12 and 13.

It is seen that while gradient descent with a 2-MHz update rate yields convergence performance
similar to the static atmosphere case even in 30-m/s wind under the high SNR assumption, gradient
descent completely fails to converge with a 10-kHz update rate. The effects of finite integration time and
the resulting finite SNR must be taken into consideration in future work, however, and there will be a
trade-off between update rates and integration times that has not been addressed here.
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Fig. 11.  Bit-error rate performance for gradient correction of 
25 coefficients in 5-m/s wind with the optimal subset method.

The present algorithm assumes that a known set of coefficients is applied at each iteration, the phase
element (the DM) is permitted to reach that state, and then a measurement of fitness is taken. However,
if random perturbations were to be applied to the mirror at a rate much less than 2 MHz, and if sensors
were to be used to sample the mirror’s position at high accuracy at a 2-MHz update rate, then assuming
that the mirror moves rapidly enough to produce significant changes from sample to sample, there could
still be sufficient information available to enable faster convergence of the gradient descent algorithm.
This is a topic for future research, but the ability to converge with 2-MHz updates under high SNR
conditions indicates the need for a careful trade-off study, where the main trade-off occurs between an
increased update rate and the need for sufficient integration time to allow reliable performance of the
gradient descent algorithm.

V. Discussion

Both genetic algorithms and gradient descent methods can, in principle, extract information from a
focal-plane intensity distribution and correct that distribution. The primary difficulty lies in the trade-off
between updates rates and integration times. A fast phase-correction element operating in the megahertz
range could enable tracking of a dynamic atmosphere, although increases in update rates and associated
shorter integration times will result in less reliable gradient estimates. Work also needs to be done to
determine whether sampling a continuously moving deformable mirror at a high rate may indeed provide
adequate information to enable gradient descent to converge even without faster mirror responses, but
the trade-off involving shorter integration times remains an open issue.

Another issue to be considered is that of local minima in the search space. The genetic algorithm re-
sults from Section III.D suggest, but do not prove, that the search space is characterized by large numbers
of local minima. There are two approaches to this problem. In one approach, a different cost function
may be chosen for minimization, and there is a possibility that a better cost function will yield fewer
local minima. This does, however, seem unlikely given the highly non-linear nature of this optimization
problem. In a second approach, there exist methods for improving upon basic gradient descent to keep it
from getting stuck in local minima and to get it out of local minima. A large number of these methods,
including the use of “momentum” and “fuzzy logic” controlled adaptation are discussed in the neural
network literature, and some of these methods have been applied to back-propagation learning in neural
networks [13]. Since the back-propagation learning problem is a non-linear optimization problem that
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Fig. 12.  Performance of gradient descent on 100 coefficients 
assuming 30-m/s wind and a 2-MHz update rate.
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Fig. 13.  Performance of gradient descent on 400 coefficients 
assuming 30-m/s wind and a 2-MHz update rate.

has some features in common with gradient-descent-based AO [3], it is likely that methods for escaping
local minima from the neural network literature will prove useful in this case as well.

The intensity distribution is rich, although incomplete, in information on the phase of the optical
signal in the pupil plane. Future algorithms for focal-plane-array-based AO may need to exploit this
information in order to achieve improved performance. The development of such algorithms is a potential
direction for future research. Such algorithms may augment genetic algorithms and gradient descent
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methods by providing a better fitness function, or such algorithms may replace genetic algorithms and
gradient descent altogether.

In summary, gradient descent algorithms have the potential to yield improvements in the performance
of optical communication systems while avoiding the complexity of guide-star-based AO. More research
is necessary to determine this, and several topics for future work have been identified.
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